Multiple Stratonovich integral and Hu–Meyer formula for Lévy processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Integral Equations Associated with Stratonovich Curveline Integral

An explicit representation formula for a solution is given in Theorem 1, when g is a bounded smooth vector field. The case of a complete vector field g ∈ C1(Rn,Rn) is analyzed in Theorem 2, introducing adequate stopping times. The main support in writing a solution comes from the solution yλ(τ1, τ2) = G (F (τ1, τ2)) [λ], (τ1, τ2) ∈ R, λ ∈ R, satisfying a deterministic gradient system  ∂τ1yλ (...

متن کامل

Stochastic Bounds for Lévy Processes

Using the Wiener–Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrat...

متن کامل

Central Limit Theorem for a Stratonovich Integral with Malliavin Calculus

The purpose of this paper is to establish the convergence in law of the sequence of “midpoint” Riemann sums for a stochastic process of the form f ′(W ), where W is a Gaussian process whose covariance function satisfies some technical conditions. As a consequence we derive a change-ofvariable formula in law with a second order correction term which is an Itô integral of f ′′(W ) with respect to...

متن کامل

Basics of Lévy Processes *

This is a draft Chapter from a book by the authors on “Lévy Driven Volatility Models”.

متن کامل

Nonlinear stochastic integrals for hyperfinite Lévy processes

We develop a notion of nonlinear stochastic integrals for hyperfinite Lévy processes, and use it to find exact formulas for expressions which are intuitively of the form Pt s=0 φ(ω, dls, s) and Qt s=0 ψ(ω, dls, s), where l is a Lévy process. These formulas are then applied to geometric Lévy processes, infinitesimal transformations of hyperfinite Lévy processes, and to minimal martingale measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2010

ISSN: 0091-1798

DOI: 10.1214/10-aop528